ar X iv : 0 70 9 . 46 43 v 1 [ m at h . C A ] 2 8 Se p 20 07 PERIODIC SOLUTIONS OF PERIODICALLY PERTURBED PLANAR AUTONOMOUS SYSTEMS : A TOPOLOGICAL APPROACH

نویسنده

  • Paolo Nistri
چکیده

Aim of this paper is to investigate the existence of periodic solutions of a nonlinear planar autonomous system having a limit cycle x0 of least period T0 > 0 when it is perturbed by a small parameter, T1−periodic, perturbation. In the case when T0/T1 is a rational number l/k, with l, k prime numbers, we provide conditions to guarantee, for the parameter perturbation ε > 0 sufficiently small, the existence of klT0− periodic solutions xε of the perturbed system which converge to the trajectory x̃0 of the limit cycle as ε → 0. Moreover, we state conditions under which T = klT0 is the least period of the periodic solutions xε. We also suggest a simple criterion which ensures that these conditions are verified. Finally, in the case when T0/T1 is an irrational number we show the nonexistence, whenever T > 0 and ε > 0, of T−periodic solutions xε of the perturbed system converging to x̃0. The employed methods are based on the topological degree theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 70 9 . 46 17 v 1 [ m at h . O A ] 2 8 Se p 20 07 C - pseudo - Kac systems and duality for coactions of concrete

We study coactions of concrete Hopf C -bimodules in the framework of (weak) C pseudo-Kac systems, define reduced crossed products and dual coactions, and prove an analogue of Baaj-Skandalis duality.

متن کامل

ar X iv : m at h - ph / 0 40 90 62 v 1 2 3 Se p 20 04 A remark on rational isochronous potentials

We consider the rational potentials of the one-dimensional mechanical systems, which have a family of periodic solutions with the same period (isochronous potentials). We prove that up to a shift and adding a constant all such potentials have the form U (x) = ω 2 x 2 or U (x) = 1 4 ω 2 x 2 + c 2 x −2 .

متن کامل

ar X iv : h ep - l at / 9 70 91 07 v 1 2 4 Se p 19 97 1 Yang - Mills classical solutions and fermionic zero modes from lattice calculations ∗

We study a series of problems in classical Yang-Mills theories using lattice methods. We first investigate SU(N) self-dual configurations on the torus with twisted boundary conditions. We also study the zero modes of the Dirac equation in topological non-trivial background Yang-Mills fields.

متن کامل

ar X iv : 0 70 9 . 43 50 v 1 [ m at h . A G ] 2 7 Se p 20 07 WHICH 3 - MANIFOLD GROUPS ARE KÄHLER GROUPS ?

The question in the title, first raised by Goldman and Donaldson, was partially answered by Reznikov. We give a complete answer, as follows: if G is both a (closed) 3-manifold group and a Kähler group, then G must be finite.

متن کامل

ar X iv : 0 70 9 . 27 64 v 1 [ m at h . A P ] 1 8 Se p 20 07 SUBCRITICAL L p BOUNDS ON SPECTRAL CLUSTERS FOR LIPSCHITZ METRICS

We establish asymptotic bounds on the L norms of spectrally localized functions in the case of two-dimensional Dirichlet forms with coefficients of Lipschitz regularity. These bounds are new for the range 6 < p < ∞. A key step in the proof is bounding the rate at which energy spreads for solutions to hyperbolic equations with Lipschitz coefficients.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008